Single-shot full strain tensor determination with microbeam X-ray Laue diffraction and a two-dimensional energy-dispersive detector

نویسندگان

  • A. Abboud
  • C. Kirchlechner
  • J. Keckes
  • T. Conka Nurdan
  • S. Send
  • J. S. Micha
  • O. Ulrich
  • R. Hartmann
  • L. Strüder
  • U. Pietsch
چکیده

The full strain and stress tensor determination in a triaxially stressed single crystal using X-ray diffraction requires a series of lattice spacing measurements at different crystal orientations. This can be achieved using a tunable X-ray source. This article reports on a novel experimental procedure for single-shot full strain tensor determination using polychromatic synchrotron radiation with an energy range from 5 to 23 keV. Microbeam X-ray Laue diffraction patterns were collected from a copper micro-bending beam along the central axis (centroid of the cross section). Taking advantage of a two-dimensional energy-dispersive X-ray detector (pnCCD), the position and energy of the collected Laue spots were measured for multiple positions on the sample, allowing the measurement of variations in the local microstructure. At the same time, both the deviatoric and hydrostatic components of the elastic strain and stress tensors were calculated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

X-ray Microbeam Measurement of Local Texture and Strain In’metals

Synchrotron x-ray sources provide high-brilliance beams that can be focused to submicron sizes with Fresnel zone-plate and x-ray mirror optics. With these intense, tunable or broadbandpass x-ray microbeams, it is now possible to study texture and strain distributions in surfaces, and in buried or encapsulated thin films. The full strain tensor and local texture can be determined by measuring th...

متن کامل

X-ray micro Laue diffraction tomography analysis of a solid oxide fuel cell1

The relevance of micro Laue diffraction tomography (µ-LT) to investigate heterogeneous polycrystalline materials has been studied. For this purpose, a multiphase solid oxide fuel cell (SOFC) electrode composite made of yttria-stabilized zirconia and nickel oxide phases, with grains of about a few micrometres in size, has been analyzed. In order to calibrate the Laue data and to test the techniq...

متن کامل

Micro-beam Laue alignment of multi-reflection Bragg coherent diffraction imaging measurements.

Multi-reflection Bragg coherent diffraction imaging has the potential to allow three-dimensional (3D) resolved measurements of the full lattice strain tensor in specific micro-crystals. Until now such measurements were hampered by the need for laborious, time-intensive alignment procedures. Here a different approach is demonstrated, using micro-beam Laue X-ray diffraction to first determine the...

متن کامل

Angle Dispersive X-ray Diffraction Beamline on Indus-2 Synchrotron Radiation Source: Commissioning and First Results

Angle dispersive x-ray diffraction (ADXRD) is a basic non destructive tool for the determination of crystal structure. Energy tunability and high flux are added advantages in using synchrotron radiation (SR) source for ADXRD technique. We have installed an ADXRD beamline (BL-12) on Indus-2, the Indian synchrotron source. Indus-2 is a 2.5GeV, 300mA SR source. The beamline consists of a Si (311) ...

متن کامل

Significance of Chemical Decomposition of Chloroethyl Phenyl Sulfide (CEPS) using Zinc-Cadmium Oxide (ZnO-CdO) Nanocomposite

The zinc-cadmium oxide (ZnO-CdO) nanocomposites with different weight percentages of cadmium oxide (CdO) nanoparticles were successfully synthesized by the sonochemical method using zinc and cadmium nitrates as precursors to probe their nano-structured surfaces for the decomposition reactions of chloroethyl phenyl sulfide (CEPS) as a surrogate of sulfur mustard agent simulant. Scanning electron...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2017